Cookies help us deliver our services. By using our services, you agree to our use of cookies.



definition : congenital

A birth defect, also known as congenital disorder, is a condition present at birth regardless of cause. Severity may vary from mild to severe. They are divided into two main types: structural birth defects in which there is problems with the shape of a body part and functional birth defects in which there is problems with how a body part works.

Birth defects may result from genetic or chromosomal disorders, exposure to certain medications or chemicals, or certain infections during pregnancy. Risk factors include folic acid deficiency, drinking alcohol or smoking during pregnancy, poorly controlled diabetes, and a mother over the age of 35 years old.

Treatment varies depending on the defect in question. Birth defects affected about 96 million people as of 2015. In the United States they occur in about 3% of newborns. They resulted in about 628,000 deaths in 2015 down from 751,000 in 1990.

== Classification == Much of the language used for describing congenital conditions predates genomic mapping, and structural conditions are often considered separately from other congenital conditions. It is now known that many metabolic conditions may have subtle structural expression, and structural conditions often have genetic links. Still, congenital conditions are often classified in a structural basis, organized when possible by primary organ system affected.

=== Primarily structural === Several terms are used to describe congenital abnormalities. (Some of these are also used to describe noncongenital conditions, and more than one term may apply in an individual condition.)

==== Terminology ==== * A congenital physical anomaly is an abnormality of the structure of a body part. An anomaly may or may not be perceived as a problem condition. Many, if not most, people have one or more minor physical anomalies if examined carefully. Examples of minor anomalies can include curvature of the 5th finger (clinodactyly), a third nipple, tiny indentations of the skin near the ears (preauricular pits), shortness of the 4th metacarpal or metatarsal bones, or dimples over the lower spine (sacral dimples). Some minor anomalies may be clues to more significant internal abnormalities. * Birth defect is a widely used term for a congenital malformation, i.e. a congenital, physical anomaly which is recognizable at birth, and which is significant enough to be considered a problem. According to the CDC, most birth defects are believed to be caused by a complex mix of factors including genetics, environment, and behaviors, though many birth defects have no known cause. An example of a birth defect is cleft palate, which occurs during the fourth and seventh week of gestation. Body tissue and special cells from each side of the head grow toward the center of the face. They join together to make the face. * A congenital malformation is a congenital physical anomaly that is deleterious, i.e. a structural defect perceived as a problem. A typical combination of malformations affecting more than one body part is referred to as a malformation syndrome. * Some conditions are due to abnormal tissue development: ** A malformation is associated with a disorder of tissue development. Malformations often occur in the first trimester. ** A dysplasia is a disorder at the organ level that is due to problems with tissue development.

Defects can be bilateral or unilateral, and different defects often coexist in an individual child.

=== Primarily metabolic ===

A congenital metabolic disease is also referred to as an inborn error of metabolism. Most of these are single gene defects, usually heritable. Many affect the structure of body parts but some simply affect the function.

=== Other === Other well defined genetic conditions may affect the production of hormones, receptors, structural proteins, and ion channels.

== Causes ==

=== Fetal alcohol exposure ===

The mother's consumption of alcohol during pregnancy can cause a continuum of various permanent birth defects : cranofacial abnormalities, brain damage, intellectual disability, heart disease, kidney abnormality, skeletal anomalies, ocular abnormalities.

The prevalence of children affected is estimated at least 1 percent in U.S. as well in Canada.

Very few studies have investigated the links between paternal alcohol use and offspring health.

However, recent animal research has shown a correlation between paternal alcohol exposure and decreased offspring birth weight. Behavioral and cognitive disorders, including difficulties with learning and memory, hyperactivity, and lowered stress tolerance have been linked to paternal alcohol ingestion. The compromised stress management skills of animals whose male parent was exposed to alcohol are similar to the exaggerated responses to stress that children with Fetal Alcohol Syndrome display because of maternal alcohol use. These birth defects and behavioral disorders were found in cases of both long- and short-term paternal alcohol ingestion. In the same animal study, paternal alcohol exposure was correlated with a significant difference in organ size and the increased risk of the offspring displaying ventricular septal defects (VSD) at birth.

It is estimated that 10% of all birth defects are caused by prenatal exposure to a teratogenic agent. Teratogen-caused birth defects are potentially preventable. Studies have shown that nearly 50% of pregnant women have been exposed to at least one medication during gestation. During pregnancy, a female can also be exposed to teratogens from the contaminated clothing or toxins within the seminal fluid of a partner. An additional study found that of 200 individuals referred for genetic counseling for a teratogenic exposure, 52% were exposed to more than one potential teratogen.

==== Medications and supplements ==== Probably, the most well-known teratogenic drug is thalidomide. It was developed near the end of the 1950s by Chemie Grűnenthal as a sleep inducing aid and antiemetic. Because of its ability to prevent nausea it was prescribed for pregnant women in almost 50 countries worldwide between 1956–1962. Until William McBride published the study leading to its withdrawal from the market at 1961, about 8- 10 000 severely malformed children were born. The most typical disorder induced by thalidomide were reductional deformities of the long bones of the extremities. Phocomelia otherwise a rare deformity, which therefore helped to recognise the teratogenic effect of the new drug. Among other malformations caused by thalidomide were those of ears, eyes, brain, kidney, heart, digestive and respiratory tract. 40% of the prenatally affected children died soon after birth. Vitamine A and similar substances can induce spontaneous abortions, premature births, defects of eyes (microphthalmia), ears, thymus, face deformities, neurological (hydrocephalus, microcephalia) and cardiovascular defects, as well as mental retardation.

==== Toxic substances ==== Drinking water is often a vessel through which harmful toxins travel. Studies have shown that heavy metals, elements, nitrates, nitrites, fluoride can be carried through water and cause congenital disorders.

Nitrate, which is found mostly in drinking water from ground sources, is a powerful teratogen. A case-control study in rural Australia that was conducted following frequent reports of prenatal mortality and congenital malformations found that those who drank the nitrate-infected groundwater, as opposed to rain water, ran the risk of giving birth to children with central nervous system disorders, muscoskeletal defects, and cardiac defects.

Chlorinated and aromatic solvents such as benzene and trichloroethylene sometimes enter the water supply due to oversights in waste disposal. A case-control study on the area found that by 1986, leukemia was occurring in the children of Woburn, Massachusetts at a rate that was four times the expected rate of incidence. Further investigation revealed a connection between the high occurrence of leukemia and an error in water distribution that delivered water to the town with significant contamination manufacturing waste containing trichloroethylene. As an endocrine disruptor, the DDT was shown to induce miscarriages, interfere with the development of the female reproductive system, cause the congenital hypothyroidism and suspectibly childhood obesity.

The fetus is even more susceptible to damage from carbon monoxide intake, which can be harmful when inhaled during pregnancy, usually through first or second-hand tobacco smoke. The concentration of carbon monoxide in the infant born to a non-smoking mother is around 2%, and this concentration drastically increases to a range of 6%–9% if the mother smokes tobacco. Other possible sources of prenatal carbon monoxide intoxication are exhaust gas from combustion motors, use of dichloromethane (paint thinner, varnish removers) in enclosed areas, defective gas hot water heaters, indoor barbeques, open flames in poorly-ventilated areas, atmospheric exposure in highly polluted areas. Exposure to carbon monoxide at toxic levels during the first two trimesters of pregnancy can lead to intrauterine growth restriction, leading to a baby that has stunted growth and is born smaller than 90% of other babies at the same gestational age. The effect of chronic exposure to carbon monoxide can depend on the stage of pregnancy in which the mother is exposed. Exposure during the embryonic stage can have neurological consequences, such as telencephalic dysgenesis, behavioral difficulties during infancy, and reduction of cerebellum volume. There are also possible skeletal defects that could result from exposure to carbon monoxide during the embryonic stage, such as hand and foot malformations, hip dysplasia, hip subluxation, agenisis of a limb, and inferior maxillary atresia with glossoptosis. Also, carbon monoxide exposure between days 35 and 40 of embryonic development can lead to an increased risk of the child developing a cleft palate. Exposure to carbon monoxide or polluted ozone exposure can also lead to cardiac defects of the ventrical septal, pulmonary artery and heart valves. The effects of carbon monoxide exposure are decreased later in fetal development during the fetal stage, but they may still lead to anoxic encephalopathy.

Industrial pollution can also lead to congenital defects. Over a period of 37 years, the Chisso Corporation, a petrochemical and plastics company, contaminated the waters of Minamata Bay with an estimated 27 tons of methylmercury, contaminating the local water supply. This led to many people in the area developing what became known as the “Minamata Disease.” Because methylmercury is a teratogen, the mercury poisoning of those residing by the bay resulted in neurological defects in the offspring. Infants exposed to mercury poisoning in utero showed predispositions to cerebral palsy, ataxia, inhibited psychomotor development, and mental retardation.

Landfill sites have been shown to have adverse effects on fetal development. Extensive research has been shown that landfills have several negative effects on babies born to mothers living near landfill sites: low birth weight, birth defects, spontaneous abortion, and fetal and infant mortality. Studies done around the Love Canal site near Niagara Falls and the Lipari Landfill in New Jersey have shown a higher proportion of low birth babies than communities farther away from landfills. A study done in California showed a positive correlation between time and quantity of dumping and low birth weights and neonatal deaths. A study in the United Kingdom showed a correspondence between pregnant women living near landfill sites and an increased risk of congenital disorders, such as neural tube defects, hypospadias, epispadia, and abdominal wall defects, such as gastroschisis and exomphalos. A study conducted on a Welsh community also showed an increase incidence of gastroschisis. Another study was done on twenty-one European hazardous waste sites and showed that those living within three kilometers had an increased risk of giving birth to infants with birth defects and that as distance from the land increased, the risk decreased. These birth defects included neural tube defects, malformations of the cardiac septa, anomalies of arteries and veins, and chromosomal anomalies. Looking at communities that live near landfill sites brings up environmental justice. A vast majority of sites are located near poor, mostly black, communities. For example, between the early 1920s and 1978, about 25% of Houston’s population was black. However, over 80% of landfills and incinerators during this time were located in these black communities.

Another issue regarding environmental justice is lead poisoning. If the fetus is exposed to lead during the pregnancy, this can result in learning difficulties and slowed growth. A lot of paints (before 1978) and pipes contain lead. Therefore, pregnant women who live in homes with lead paint will inhale the dust containing lead, leading to lead exposure in the fetus. When lead pipes are used for drinking water and cooking water, this water is ingested, along with the lead, exposing the fetus to this toxin. This issue is more prevalent in poorer communities. This is because more well off families are able to afford to have their homes repainted and pipes renovated.

=== Smoking === Paternal smoking prior to conception has been linked with the increased risk of congenital abnormalities in offspring.

Other infectious agents include cytomegalovirus, the herpes simplex virus, hyperthermia, toxoplasmosis, and syphilis. Mother exposure to cytomegalovirus can cause microcephaly, cerebral calcifications, blindness, chorioretinitis (which can cause blindness), hepatosplenomegaly, and meningoencephalitis in fetuses. cerebral calcifications means certain areas of the brain have atypical calcium deposits, and meningoencephalitis is the enlargement of the brain. All three disorders cause abnormal brain function or mental retardation. Hepatosplenomegaly is the enlargement of the liver and spleen which causes digestive problems. It can also cause some kernicterus and petechiae. Kernicterus causes yellow pigmentation of the skin, brain damage, and deafness. Petechaie is when the capillaries bleed resulting in red/purple spots on the skin. However, cytomegalovirus is often fatal in the embryo.

The herpes simplex virus can cause microcephaly, microphthalmus (abnormally small eyeballs), retinal dysplasia, hepatosplenomegaly, and mental retardation. Mother exposure to toxoplasmosis can cause cerebral calcification, hydrocephalus (causes mental disabilities), and mental retardation in infants. Other birth abnormalities have been reported as well, such as chorioretinitis, microphthalmus, and ocular defects. Syphilis causes congenital deafness, mental retardation, and diffuse fibrosis in organs, such as the liver and lungs, if the embryo is exposed. Folic acid, or vitamin B9, aids the development of the foetal nervous system.

=== Physical restraint === External physical shocks or constrainment due to growth in a restricted space, may result in unintended deformation or separation of cellular structures resulting in an abnormal final shape or damaged structures unable to function as expected. An example is Potter syndrome due to oligohydramnios. This finding is important for future understandings of how genetics may predispose individuals for diseases like obesity, diabetes, and cancer.

For multicellular organisms that develop in a womb, the physical interference or presence of other similarly developing organisms such as twins can result in the two cellular masses being integrated into a larger whole, with the combined cells attempting to continue to develop in a manner that satisfies the intended growth patterns of both cell masses. The two cellular masses can compete with each other, and may either duplicate or merge various structures. This results in conditions such as conjoined twins, and the resulting merged organism may die at birth when it must leave the life-sustaining environment of the womb and must attempt to sustain its biological processes independently.

=== Genetic causes ===

Genetic causes of congenital anomalies include inheritance of abnormal genes from the mother or the father, as well as new mutations in one of the germ cells that gave rise to the fetus. Male germ cells mutate at a much faster rate than female germ cells, and as the father ages, the DNA of the germ cells mutates quickly.

Genetic disorders or diseases are all congenital, though they may not be expressed or recognized until later in life. Genetic diseases may be divided into single-gene defects, multiple-gene disorders, or chromosomal defects. Single-gene defects may arise from abnormalities of both copies of an autosomal gene (a recessive disorder) or of only one of the two copies (a dominant disorder). Some conditions result from deletions or abnormalities of a few genes located contiguously on a chromosome. Chromosomal disorders involve the loss or duplication of larger portions of a chromosome (or an entire chromosome) containing hundreds of genes. Large chromosomal abnormalities always produce effects on many different body parts and organ systems.

=== Socioeconomic status === A low socioeconomic status in a deprived neighborhood may include exposure to “environmental stressors and risk factors.” Socioeconomic inequalities are commonly measured by the Cartairs-Morris score, Index of Multiple Deprivation, Townsend deprivation index, and the Jarman score. The Jarman score, for example, considers “unemployment, overcrowding, single parents, under-fives, elderly living alone, ethnicity, low social class and residential mobility.” Studies also suggest that children born in low SES families are “likely to be born prematurely, at low birth weight, or with asphyxia, a birth defect, a disability, fetal alcohol syndrome, or AIDS.”

The surviving women of Hiroshima and Nagasaki who were able to conceive, though exposed to substantial amounts of radiation, later had children with no higher incidence of abnormalities/birth defects than in the Japanese population as a whole.

Relatively few studies have researched the effects of paternal radiation exposure on offspring. Following the Chernobyl disaster, it was assumed in the 1990s that the germ line of irradiated fathers suffered minisatellite mutations in the DNA, which was inherited by descendants. more recently however, the World Health Organization states, "children conceived before or after their father's exposure showed no statistically significant differences in mutation frequencies". This statistically insignificant increase was also seen by independent researchers analyzing the children of the liquidators. Animal studies have shown that incomparably massive doses of X-ray irradiation of male mice resulted in birth defects of the offspring.

=== Parent's age ===

Certain birth complications can occur more often in advanced maternal age (greater than 35 years). Complications include fetal growth restriction, preeclampsia, placental abruption, pre-mature births, and stillbirth. These complications not only may put the child at risk, but also the mother.

The effects of the fathers age on offspring are not yet well understood and are studied far less extensively than the effects of the mother's age. Fathers contribute proportionally more DNA mutations to their offspring via their germ cells than the mother, with the paternal age governing how many mutations are passed on. This is because, as humans age, male germ cells acquire mutations at a much faster rate than female germ cells. Recent studies have concluded that 5-9% of Down's syndrome cases are due to paternal effects, but these findings are controversial.

There is concrete evidence that advanced paternal age is associated with the increased likelihood that a mother will have a miscarriage or that fetal death will occur. These are referred to as sporadic, a term that implies an unknown cause, random occurrence regardless of maternal living conditions, and a low recurrence risk for future children. For 20-25% of anomalies there seems to be a "multifactorial" cause, meaning a complex interaction of multiple minor genetic anomalies with environmental risk factors. Another 10–13% of anomalies have a purely environmental cause (e.g. infections, illness, or drug abuse in the mother). Only 12–25% of anomalies have a purely genetic cause. Of these, the majority are chromosomal anomalies.

== Epidemiology ==

Congenital anomalies resulted in about 632,000 deaths per year in 2013 down from 751,000 in 1990. For example, pyloric stenosis occurs more often in males while congenital hip dislocation is four to five times more likely to occur in females. Among children with one kidney, there are approximately twice as many males, whereas among children with three kidneys there are approximately 2.5 times more females. The same pattern is observed among infants with excessive number of ribs, vertebrae, teeth and other organs which in a process of evolution have undergone reduction—among them there are more females. Contrarily, among the infants with their scarcity, there are more males. Anencephaly is shown to occur approximately twice as frequently in females. The number of boys born with 6 fingers is two times higher than the number of girls. Now various techniques are available to detect congenital anomalies in fetus before birth.

About 3% of newborns have a "major physical anomaly", meaning a physical anomaly that has cosmetic or functional significance. Physical congenital abnormalities are the leading cause of infant mortality in the United States, accounting for more than 20% of all infant deaths. Seven to ten percent of all children will require extensive medical care to diagnose or treat a birth defect.

:{| class="wikitable" |+ The sex ratio of patients with congenital malformations ! Congenital anomaly !! Sex ratio, ♂♂:♀♀ |- | Defects with female predominance || |- | Congenital hip dislocation || 1 : 5.2; 1 : 8; |- | Cleft palate || 1 : 3 1.29 : 1

In respect of an etiology, sexual distinctions can be divided on appearing before and after differentiation of male's gonads in during embryonic development, which begins from eighteenth week. The testosterone level in male embryos thus raises considerably. The subsequent hormonal and physiological distinctions of male and female embryos can explain some sexual differences in frequency of congenital defects. It is difficult to explain the observed differences in the frequency of birth defects between the sexes by the details of the reproductive functions or the influence of environmental and social factors.

=== United States === The CDC and National Birth Defect Project studied the incidence of birth defects in the US. Key findings include: * Down syndrome was the most common condition with an estimated prevalence of 14.47 per 10,000 live births, implying about 6,000 diagnoses each year. * About 7,000 babies are born with a cleft palate, cleft lip or both. *

== See also == * Malformative syndrome * ICD-10 Chapter Q: Congenital malformations, deformations and chromosomal abnormalities * Idiopathic * List of congenital disorders * List of ICD-9 codes 740-759: Congenital anomalies * March of Dimes * Mitochondrial disease * Supernumerary body part

== References ==

== External links ==

* [ CDC’s National Center on Birth Defects and Developmental Disabilities]

Category:Developmental biology Category:RTT

Texte soumis à la licence CC-BY-SA. Source : Article de Wikipédia

free classified ads